Rによるパス解析

概要

左下のデータは、25人の生徒について得られた学力テスト、学習意欲尺度、学校生活適応度尺度、 自尊感情尺度それぞれの得点を示したものである。¹ ここでは、パス解析によりこのデータを右下 のパス図に示されたモデルに当てはめることにする。

	A	В	С	D	E
1	生徒	学力	意欲	適応	自尊
2	1	38	6	14	3
3	2	75	16	17	14
4	3	44	9	14	11
5	4	59	8	13	7
6	5	50	13	17	3

※パス係数はb、分散はvで表している。eは残差である。

データの読み込み

まず、このデータを data01 として読み込んでおく。²

パッケージのインストールと読み込み

Rでパス解析を実行するには、専用のパッケージをインストールしておく必要がある。パス解析を 含め構造方程式モデリングを実行するためのパッケージとしては、sem や lavaan などが知られて いる。ここでは、sem パッケージを用いることにする。

パッケージのダウンロードとインストール

パッケージをウェブ上でダウンロードし、インストールする関数は install.packages() である。 カッコ内にパッケージ名を""でくくって指定する。sem パッケージをインストールするコマンドは 以下の通りとなる。

¹ 最初の5名分だけを表示してある。なお、このデータは http://www.juen.ac.jp/lab/okumura/data.html から"regpath.csv" として ダウンロード可能である (リンクを右クリックして保存)。

²外部ファイルの読み込みについては、回帰分析のレジュメを参照のこと。

このコマンドを実行すると、上のようにCRANのミラーサイト一覧が別ウィンドウで表示される。 どれを選んでもよいが、とりあえずここでは Japan (Tokyo) を選択しておく。いずれかを選択し て [OK] ボタンをクリックすると、Rに sem パッケージがダウンロード、インストールされるは ずである。

パッケージの読み込み

インストールしたパッケージを利用するには、R内にそれを呼び出す (ロードする) 必要がある。 この関数は library() である。カッコ内にパッケージ名を""でくくって指定する。sem パッケージ をロードするコマンドは以下の通りとなる。正常にロードされれば、特に出力はされない。

library("sem")

semパッケージの利用

semパッケージを用いてパス解析を実行するステップは、①モデルの指定、②モデルの当ては め、 ③結果の表示、の3つに大きく分けられる。

モデルの指定

ここでは、モデルの指定に関数 specifyModel() を用いることにする。この関数では、単方向のパスを "-->" で、双方向のパスを "<->" で表す。今回のモデルでは双方向のパスはないが、左右に同じ変数を指定して変数の分散を表す際に用いる。

<pre>specifyModel()</pre>	モデルの指定を行う関数。					
	->	単方向のパスとその係数を指定する。([独立変数] -> [従属変数])				
	<->	双方向のパスとその係数 (共分散/相関係数) を指定する。左右同じ変数の場 合は、内生変数の残差分散か外生変数の分散を指定することになる。				

上記のモデルを指定するコマンドは、以下の通りである (右は実行結果)。

model01 <- specifyModel() 意欲 -> 学力, b1, NA 意欲 -> 適応, b2, NA 適応 -> 学力, b3, NA 学力 -> 自尊, b4, NA 学力 <-> 学力, v1, NA 自尊 <-> 自尊, v2, NA 適応 <-> 適応, v3, NA 意欲 <-> 意欲, v4, NA	<pre>> model01 <- specifyModel() 1: 意欲 -> 学力, b1, NA 2: 意欲 -> 適応, b2, NA 3: 適応 -> 学力, b3, NA 4: 学力 -> 自尊, b4, NA 5: 学力 <-> 学力, v1, NA 6: 自尊 <-> 自尊, v2, NA 7: 適応 <-> 適応, v3, NA 8: 意欲 <-> 意欲, v4, NA 9:</pre>
<注:最終行の後は1行空けること>	9: Read 8 records >

specifyModel() に続く各行では、モデルに含まれるパラメタ (パス係数や分散・共分散など) を "**パスの指定,係数のラベル,値の指定**"の順で記述する。³

例えば、"**意欲** -> **学力**, b1, NA"は、[意欲] から [学力] へ単方向のパスを引き、そのパス係数に b1 というラベルをふること、またb1の値は未知 (NA: **n**ot **a**vailable) であることを表している。 同様に、"**学力** <-> **学力**, v1, NA"は、[学力] と [学力] の間に双方向のパスを引き、そのパス係 数に v1 というラベルをふること、またv1の値は未知であることを表している。この場合は "<->"

³モデルの指定とそれ以外のコマンドを区別するために、モデルを記述した後は1行空けておかないといけないので注意が必要である。

が同じ変数同士に引かれているので、v1は [学力] のうち [意欲] と [適応] で予測できなかった残 差の分散を意味することになる。なお、このモデルでは [意欲] は外生変数であり、この場合のv4 は [意欲] 自身の分散となる。冒頭のパス図とコマンドとを見比べて、対応を確認して欲しい。 以上のプログラムを実行することで、冒頭のパス図で指定したモデルが model01 というオブジェ クトに代入される。

モデルの当てはめ

次に、model01 に代入されたモデルを、data01に当てはめる。ここで、パス解析を実行するには生 データではなく、各変数の分散と変数間の共分散、そしてデータの規模 (人数) が分かれば十分で ある。そこで、まず関数 cov() を用いて、data01の2~5列目に格納されている4つの変数につい て、分散と共分散を算出しておくことにする。ここでは、それを cov01 に代入しておく。

cov01 <- cov(data01[,2:5])
cov01</pre>

cov01 の中身は、以下のような行列 (分散共分散行列) となっている。対角成分が分散、非対角成 分が共分散である。これが次にパス解析を実行する際のデータとなる。

	学力	意欲	適応	自尊
学力	457.00000	51.950000	39.0333333	55.1500000
意欲	51.95000	17.026667	6.2933333	6.2950000
適応	39.03333	6.293333	14.2266667	0.2033333
自尊	55.15000	6.295000	0.2033333	28.6566667

モデルの当てはめには、関数 sem() を用いる。この関数には多くの引数があるが、ここでは次の3 つを知っておけば問題ない。

sem()	モデルをデータに当てはめて分析を実行する関数。						
	model=	データに当てはめるモデルを特定する。					
	S=	データとなる分散共分散行列を指定する。					
	N=	データの規模 (人数) を指定する。					

すでに作成したパス解析のモデル model01 をデータ (分散共分散行列) cov01 に当てはめる場合の コマンドは、以下のようになる。ここで、nrow() は、データフレームが何行あるか (つまり何人 分のデータがあるか) を算出する関数である。分析結果は、fit01 に代入されることになる。

fit01 <- sem(model=model01, S=cov01, N=nrow(data01))</pre>

結果の表示

関数 summary() によって、fit01に代入された結果を表示させることができる。ただし、引数 rsquare=T は、各内生変数について決定係数 R²を表示させることを、fit.indices=c("GFI",…) は c() 内で指定された適合度指標 (指標名を""に入れ、カンマで区切って並べる) を表示させる指示 である。また、標準化されたパス係数については、関数 stdCoef() によって得られる。

```
summary(fit01,rsquare=T,fit.indices=c("GFI","AGFI","SRMR","RMSEA","AIC","BIC"))
stdCoef(fit01)
```

モデルの 適合度	Model Chisquare = 2.195402 Df = 2 Pr(>Chisq) = 0.3336373 Goodness-of-fit index = 0.9581224 Adjusted goodness-of-fit index = 0.7906121 RMSEA index = 0.06380338 90% CI: (NA, 0.4152706) SRMR = 0.07058997 AIC = 18.1954 BIC = -4.24235									
	(…一部省略…)									
決定係数	R-square for Endogenous Variables 学力 適応 自尊 0.4192 0.1635 0.2322									
		標準化された係数								
パラメータ	Parameter Estimates Estimate Std Error z value Pr(> z)	Std. Estimate								
の推定値	b1 2.4351462 0.88122407 2.763368 0.0057208266 学力 < 意欲	b1 0.4700367								
パス係数	b2 0.3696163 0.17065265 2.165898 0.0303189609 適応 < 意欲	b2 0.4043564								
,、、、 休奴 分散	b3 1.0004583 0.90405007 1.728001 0.0838804592 字刀 < 適応 b4 0.1206783 0.04478783 2.694445 0.0070505997 自尊 < 学力	b3 0.2940275 b4 0.4819196								
力 款 土 分 数	v1 265.4467334 76.62787148 3.464102 0.0005320055 学力 <> 学力	v1 0.5808462								
(枳悶(豕粉)	∨2 22.0012564 6.35121565 3.464102 0.0005320055 自尊 <> 自尊	v2 0.7677535								
	v3 11.9005482 3.43539234 3.464102 0.0005320055 週心 <> 週心 v4 17.0266667 4.91517529 3.464102 0.0005320055 意欲 <> 意欲	vs 0.8364959 v4 1.0000000								

分析結果

モデルの適合度

適合度検定の結果、このモデルが正しくないという帰無仮説は5%水準で棄却されなかった (χ^2 (2) = 2.195, *p* = .334)。また、適合度指標の値は、このモデルがデータによく適合していることを示している (GFI=.958, AGFI=.791, RMSEA=.064, SRMR=.071)。

決定係数

内生変数 [学力]、[適応]、[自尊]の決定係数は、それぞれ R²s=.419, .164, .232であった。

パラメータの推定値

ここには、ノ		A	В	С	D	E	外生変	R ² =.419	
数の分散の値	1	生徒	学力	意欲	適応	自尊	いる。[適	(e1) ¹ → 学力 ←	意欲
応1から[意欲	2	1	38	6	14	3	- すべて5%		
水淮で右音!	3	2	75	16	17	14	,	.482 .294	.404
小牛(有息の	4	3	44	9	14	11			•
右図は、パン	5	4	59	8	13	7	き入れた	(e2) <mark>→</mark> 自尊	適応 <mark>← </mark> (e3)
ものである。	6	5	50	13	17	3	数、内生	R ² =.232	R ² =.164

data01

4標準化された結果については枠内に並べて記載した。